
 

I Are What You Eat

UI is an abbreviation for User Interface — a computer's UI is everything you
see when using a computer. The Mac has a Graphical User Interface (GUI, 
oftentimes pronounced "gooey") which utilizes windows, icons, menus, and 
a pointing device. Text-input systems, like MS-DOS, in which the user types 
all instructions (in stark contrast to the much easier GUI approach), are 
called command-line interfaces.

A computer's User Interface is a virtual environment, just as an office or 
home is a real-world environment. We spend a great deal of time in this 
virtual environment: doing work, playing games, communicating, and 
otherwise accessing information. Because so much time is spent in this 
environment, the smallest details take on greater significance, and even tiny
mistakes in interface design become magnified into glaring annoyances.

The Mac OS UI is often held up as a paragon of good human interface 
design. From its very beginning, the Mac has benefitted from a clearly 
defined set of Human Interface Guidelines, ensuring that all Macintosh 
applications behave in a way that is consistent, predictable, and sensible. 
Software developers ignore the Human Interface Guidelines at their peril!

Speaking of which, Microsoft in particular has a long history of cavalierly 
ignoring the Human Interface Guidelines in their Macintosh applications, 
and Microsoft's operating systems show a similar disregard for creating a 
pleasant and consistent user experience. Although Windows '95 was touted 
as being as easy-to-use as the Mac OS (and it was a distinct improvement 
over Windows 3.1), the Windows user interface is hampered by small 
mistakes and illogical choices which combine to create a distinctly 
unfriendly (but semi-usable) environment.

By comparing and contrasting the Mac OS and Windows, we can learn a 



great deal about how the User Interface can either enhance or detract from 
the process of using a computer.

 

eys to the Kingdom

The three key elements of good interface design are predictability, 
information, and simplicity. Remember these.

Predictability comes from the consistent behavior of interface elements like 
windows and menus. For instance, menus always drop down with a click (or 
click-and-hold) in every application, even though the commands they 
contain are different. Many keyboard shortcuts are the same in every app —
Undo, Cut, Copy, Paste, Save, and Quit are nearly universal. By ensuring 
that programs behave in a way that is consistent and predictable, the Mac 
lets users feel confident that they can perform basic functions in any 
application.

Information must be displayed as efficiently as possible, balancing the need 
to have all relevant data readily available with the need to conserve screen 
real estate and avoid a cluttered or overly-complex appearance.

Simplicity should be the guiding principle in all UI design. Never make the 
user perform two actions when one will suffice. Never ask the user things 
they aren't likely to care about. Avoid adding so many features that it 
becomes difficult to learn how to do even the simplest tasks.

 

creen Layout and Prioritization

Apple decided that information should be displayed and positioned on the 
screen according to its importance. Immediate actions always appear in the 
center of the screen: dialog boxes, alerts, status indicators, etc. The Mac's 
screen is organized in the way our Western culture reads and writes: we 
begin at the top on the left-hand side, move to the right and then 
downward. The Apple, File, and Edit menus are given prominent status, as 
they contain the most important and often-used commands. Moving to the 
right, less frequently-used menus like Help and the application menu 
remain out of the way until they're needed. Microsoft, on the other hand, 
decided to do just the opposite, probably just to be different from Apple 
(and avoid further look-and-feel lawsuits). The Win95 Start menu is located 
at the bottom left of the screen, and moving upward, the first menu item is 



for shutting down the computer!

Apple puts their menubar at the top of the screen, so every menu can be 
accessed from the one centralized location. Microsoft puts menus at the top 
of each and every window; when many windows are open, it becomes more 
difficult to find the right menu, and some windows are likely to cover the 
menus of other windows.

 

olor

An interesting difference between Mac and Windows is the choice of default
cursor color, as seen in this example:

 

ecause most pages are white with black text, Apple made the arrow cursor 
black so that it had high contrast against the white background. The black 
arrow has a white border so it can be still be seen against dark backdrops. 
When Microsoft replicated Apple's cursor bit-for-bit they inverted the colors
— the resulting cursor has less contrast in most situations, and is 
consequently much harder to track.

 

'll Tell You Where To Stick Your Buttons

Microsoft appropriated some concepts from MacWrite (embedding a ruler in
a document) and MacPaint (tools/palettes) and seemingly went berserk, so 
that Microsoft applications are littered with "chicklet" buttons, tiny buttons 
with no clear visual clue as to their function. Commands easily found and 
understood in menus are instead embedded in a visual cacophony of 
confusing little buttons, each wasting precious screen real-estate. This can 



confuse new users (as well as make life more difficult for experienced users)
and increases their chance of making serious errors.

Having some "chicklets" is not necessarily a bad thing; AppleWorks 
(originally ClarisWorks) handles buttons reasonably well. But not every 
command or function should be accessible through a button. A toolbar with 
a few buttons for the most frequently used functions is clearer and easier to
use than one filled with dozens of buttons that perform every conceivable 
task. Buttons should only be used if their effects are visually obvious — if no
result is immediately apparent, the user might click again and again, and 
wonder if they clicked at all. Buttons should never be used for "destructive" 
actions (eg. deleting files), since accidental mouse-clicks are not uncommon.

 

À La Carte

Since menus are used so frequently, it could be argued that they are the 
most important single element in the User Interface. Using menus is the 
most common way of issuing "verbs" (commands) to a program.

A menu is a group of commands organized by topic. The user selects a 
command (menu item) from the list, and an action is performed. For 
instance, the File menu contains a list of actions that can be performed on 
files (Open, Close, Print, and so on), while actions relating to text editing 
(Cut, Copy, Paste) reside under the Edit menu. Such a simple concept. 
Things become more complicated because there are so many details and 
variables to take into consideration.

Our preferences for menu behavior are formed by what we become used to. 
One can get used to any sort of inconvenience (even to the point of thinking 
of it as "natural"), but that doesn't mean it is a necessary fact of life, or that 
there might not be a better way of doing things. In fact, it was just this type 
of reasoning that led to all the DOS/Unix people ridiculing the GUI for the 
first few years of its life.

Some menu items have "sub" menus, so that related menu items can be 
more logically grouped together, and to prevent menus from becoming too 
long to be displayed efficiently on the screen. Hierarchical menus are 
usually denoted with an arrow (showing that more information is available).

 



t is generally not recommended to have more than one level of hierarchy 
because it becomes too hard to find things, and becomes painful for the 
user to navigate all those levels. In Windows 95, for instance, the Start 
menu contains so many sub-menus that trying to choose the right sub-menu 
can be like playing Whack-A-Mole!

 

eeking in Your Windows

Windows are such an important element of the User Interface that 
Microsoft named their whole Operating System (shell) after them, forever 
confusing the terminology and users in a blatant attempt to take credit for 
concepts developed decades earlier. Microsoft got their windows working 
properly only 10 years after the rest of the industry had already adopted 
them, but you have to admire their chutzpah — come late to the game, 
implement poorly, and take credit for everyone else's work. But rather than 
continuing to bash Microsoft (as much fun as that is), this section looks at 
the similarities and differences in window behaviors between platforms, and
what is good and bad about each. Sadly, so much is bad (interface-wise), 
about Microsoft's implementation of windows that it might seem to be 
Windows-bashing anyway.

A window is a container for displaying information on the screen. It allows 
the system to overlap different information containers as if they were 
separate sheets of paper. Screen real estate (the amount of visual space 
available) is a very important issue, so the idea is to allow users to quickly 
resize, relocate, reorder, close, and otherwise manipulate these windows.

Apple's Windows
Work at Xerox's Palo Alto Research Center (and earlier work by Doug 
Englebart, the inventor of the mouse) defined the first steps for windowing 
technology, such as the basic concept of overlapping windows. But Apple 
helped define almost everything else we use in this metaphor. Apple 
originated the titlebar, the grow box, the close box, and most of the direct 
manipulation (dragging windows around to move them, resizing behaviors, 
etc.), first for the Lisa and then the Macintosh. Apple's implementation of 
windowing is clear, efficient, and easy to use.

On the Mac, each window is a separate entity from other windows, and each
window can be moved independently.

Palettes are bound to applications (and to individual document windows 
within the application). When you activate an application, the palettes of 



other applications hide themselves, and the active application's palettes 
appear. This reduces palette clutter.

Windows are grouped by application. When you pull an application to the 
front by selecting one of its windows, all of its windows come to the front.

Microsoft's Windows
Microsoft tends to borrow from others, taking whatever seems good and 
adding it to elements assimilated from other systems (resistance is futile). 
Microsoft's windowing comes from older text-based windowing, X-Windows 
(Unix's windowing), and from the Mac OS. All this cross-platform borrowing 
results in an inconsistent windowing system.

The first versions of MS-Windows used tiled windows instead of overlapping
windows. In fact, Bill Gates himself is reported to have said with regard to 
tiled windows, "That's not what a Mac does. I want Mac on the PC, I want 
Mac on the PC."

In MS-Windows, there are parent windows, and child windows. Child 
windows are bound to their parent windows, and embedded inside them. 
When you move a parent window, the contained child windows move as 
well. You can move a child window anywhere inside of the parent window 
you want, but it will be cut off by the edges of the parent window. 
Fortunately, in Windows 95 and later revisions, Microsoft improved parent-
child windowing, and made their windows more Mac-like. Mac on the PC, 
indeed.

 

n Conclusion

One should not infer from this article that the Mac's User Interface is 
perfect. Consistency problems, or interface "bugs," exist in every system, 
and there's always room for improvement. But there are differences in 
degrees of usability as well. Whereas Windows achieves some level of 
usability by being "good enough," the Mac's simplicity and elegance inspire 
loyalty and devotion to the platform, because good UI design is the very 
essence of the Macintosh experience.

 

rateful Acknowledgment

This article was inspired by and adapted from David K. Every's essays on 



User Interface. For further readings about human-computer interaction 
issues, the interested reader would do well to seek out the "Interface" 
section of David's MacKiDo Temple at http://www.mackido.com/Interface/ . Many 
thanks to David for his permission to adapt his work for this article.

               Brian Kelley
                    brian@applewizards.net

   

                                                                                        http://applewizards.net/


